A couple of weeks ago I attended the 20th annual Bristol Synthesis Meeting at the Victoria rooms in Bristol, UK.1 Always an excellent event, and this one was no exception. I was intrigued by a presentation given by Franziska Schoenebeck from the University of Aachen, Germany on the application of organogermanes in cross coupling chemistry.
Tag: cross coupling
The ability to handle gaseous reagents presents a number of challenges for synthetic chemists. The problem becomes particularly acute when scaling up biphasic (liquid/gas) or even triphasic (gas/liquid/solid) systems due to limiting mass transfer effects. Pressure vessels or autoclaves are also not always practical and easy to come by. A practical solution to this (if
Many years ago, I heard an anecdote regarding a fortuitous discovery in the Sharpless lab. A graduate student had been awarded their PhD and the group were celebrating in the lab with bottles of red wine (I know- but they were different times). Someone in the group-who had obviously consumed a sufficient quantity of the
1. Using an approved drug as a diazomethane surrogate1 A recent paper published in Angewandte Chemie describes the use of Temozolomide (TMZ) as a solid weighable diazomethane surrogate. TMZ is an approved drug and is the standout treatment for gliobastoma. It is stable weighable solid, with reasonable water solubility. Under physiological conditions , pH 7.4,
When approaching the synthesis of an aryl- or heteroaryl- amine most people would turn to a suitable transition metal (Pd, Cu or Ni) catalysed C-N cross-coupling reaction- most likely a Buchwald-Hartwig reaction, or, if this has limited success, Ullmann or Chan-Evans-Lam couplings.1 Photoredox approaches using aryloxy amides as a source of amidyl radicals began a trend
The Mitsunobu reaction is a powerful coupling method for alkylation of various nucleophiles (H-A) with alcohols (R-OH).[1] The classical conditions use a redox system comprising of an azodicarboxylate (such as diethylaziodicarboxylate, DEAD) and a phosphine (normally triphenylphosphine, TPP). The alcohol is essentially activated in situ and coupling occurs with the generation of the phosphine oxide
Medicinal chemists love introducing aromatic rings into their pharmacophores. These flat rings make important lipophilic and pi-stacking interactions with proteins and are good synthetic handles for attaching functionality to reach and bind to all the nooks and crannies of an active site. With the advent of cross-coupling chemistry and the simplicity and efficiency of transition
The Suzuki-Miyaura cross coupling reaction has been widely used in industry for C-C bond formation but has not successfully been applied to unactivated substrates such as amides and esters, in which the C-N and C-O bonds are cleaved. This recent report from scientists in Wroclaw (Poland), Beijing and New Jersey gets around the normally slow